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Figure 1: We systematically explored affect recognition in a VR cycling exergame (A) across three exercise intensity levels (low,
medium, and high) by collecting affect ratings and physiologicalmeasures including gaze and facial gestures from aVRheadset
(B), heart rate (C), skin conductance (D), and power output from an exercise bike. Four VR exergaming environments were
designed to elicit Calmness (F), Sadness (G), Happiness (H), and Stress (I). Linear regression models grounded in hypothesis
testing reveal that Pupil Dilation Level (PDL), Pupil Dilation Response (PDR), Skin Conductance Level (SCL), smiling, and
power output are all significant positive (green) or negative (red) predictors of different affective states (J).

ABSTRACT
There is great potential for adapting Virtual Reality (VR) exergames
based on a user’s affective state. However, physical activity and VR
interfere with physiological sensors, making affect recognition chal-
lenging. We conducted a study (n=72) in which users experienced
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four emotion inducing VR exergaming environments (happiness,
sadness, stress and calmness) at three different levels of exertion
(low, medium, high). We collected physiological measures through
pupillometry, electrodermal activity, heart rate, and facial tracking,
as well as subjective affect ratings. Our validated virtual environ-
ments, data, and analyses are openly available. We found that the
level of exertion influences the way affect can be recognised, as well
as affect itself. Furthermore, our results highlight the importance of
data cleaning to account for environmental and interpersonal fac-
tors interfering with physiological measures. The results shed light
on the relationships between physiological measures and affective
states and inform design choices about sensors and data cleaning
approaches for affective VR.
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1 INTRODUCTION
Regular physical activity helps to maintain a healthy weight, pro-
tects against chronic conditions, improves mental health, and in-
creases quality of life [19, 160, 198]. Exergaming, the combination
of physical exercise with gaming, holds great promise for incentivis-
ing physical activity [68]. Exergames can increase enjoyment and
performance compared with conventional exercise by distracting
users from uncomfortable sensations when nearing or exceeding
the ventilatory threshold [122, 141, 147, 178, 197]. Virtual reality
(VR) offers a unique platform for exergaming which can further
distract users from the aversive elements of exercise by immersing
them in engaging virtual environments [14, 15, 23, 24, 61, 84, 151].

The challenge exergames pose must be commensurate with a
user’s abilities to realise the benefits of increased enjoyment, im-
mersion, and performance [44, 115, 170]. Adapting the difficulty
of an exergame to the user helps them achieve a flow state, i.e. a
psychologically optimal state in which they are focused and en-
gaged [45, 56, 85]. For example, exergame difficulty can be adjusted
in real time based on a user’s heart rate, which can improve flow, en-
joyment, andmotivation [118] aswell as exercise performance [117].
A more advanced method to control exergame adaptations is to
estimate a user’s emotional state during gameplay based on physio-
logical sensor measures, known as affect recognition [139]. In addi-
tion to difficulty adjustment, affect recognition can be used to adapt
exergames in unique ways such as interactive storytelling [35, 127],
as well as having the potential to help us better understand the
player experience [126, 128].

Exergaming presents key challenges for affect recognition due to
the influences that physical exercise and interpersonal differences
have on physiological measures and experienced emotions. First,
emotion-inducing exergaming environments are needed to develop
and validate affect recognition approaches. Some researchers have
proposed such emotion-inducing environments [11, 15, 123, 129];
however, they have focused primarily on valence (i.e. how pleasur-
able it feels) or flow, considering only fragments of the emotional
spectrum, and have not been validated across different levels of
exercise intensity. Second, physical exertion influences many phys-
iological measures, e.g., through increased cardiovascular activity,
perspiration, and movement [21, 55, 67, 142, 143, 184]. However,
there has been no rigorous, systematic comparison of affect recog-
nition in VR exergames across different levels of exertion. Affect

recognition has been explored in non-VR exergames only at mod-
erate exercise intensities [31, 124, 126, 127] while research on high-
intensity VR exergames has focused only on valence [15]. Third,
when analysing physiological sensor data for affect recognition
in VR exergames, we need to account for the influences of exer-
cise, interpersonal differences, as well as environmental factors
such as the stimuli from the VR exergame. For example, the chang-
ing luminance in virtual environments influences pupillary affect
measures [146]. Removing these influences from sensor data can
increase the robustness, predictive power, and generalisability of
affect recognition models, which is crucial in ‘noisy’ contexts such
as VR exergaming. However, it has been unclear how to do this
for VR exergames, especially when considering different levels of
exercise intensity. Finally, the study of affect in VR exergaming
raises questions about the relationship between physical exertion
and affect in a VR exergaming context. This paper extends our un-
derstanding of affect recognition in VR exergaming by investigating
the following research questions:
RQ1 How can we manipulate affect in a VR exergame?
RQ2 How well do physiological measures predict affect during VR

exergaming?
RQ3 How can environmental and interpersonal factors influencing

physiological sensor data be accounted for?
RQ4 What is the relationship between physical exertion and affect

during VR exergaming?
To address RQ1, we designed four virtual environments (VEs) for

a VR cycling exergame to induce specific emotions (Happiness, Sad-
ness, Stress, and Calmness), with each emotion representing a dif-
ferent quadrant of Russell’s circumplex model of emotion [153, 154].
We then validated the VEs empirically and used them to elicit emo-
tions in a user study (n=72), where participants cycled through the
VEs at three different exercise intensities (low, medium, and high).
To address RQ2, we analysed the relationships of 10 physiological
measures and 10 self-reported ground-truth affect ratings for each
VE at each level of intensity. To enhance our understanding of these
relationships analytically and transparently, we used multi-level
linear regression models grounded in hypothesis testing. These
models are used to predict affect from physiological data, which
have been found to bear linear relationships [108, 174, 175]. In con-
trast to machine-learning (ML) approaches, which are often “black
box”, regression models increase our fundamental understanding
and inform other work on affect recognition. For example, Bota et
al.’s review of ML-based emotion recognition finds that “there is still
no clear evidence of which feature combination of which physiological
signals are the most relevant” [26], and our regression models shed
light on this in the context of VR exergaming. To address RQ3,
we compared three different levels of sensor data cleaning: raw
data, accounting for environmental factors, and also accounting for
interpersonal differences. Finally, we addressed RQ4 by testing the
relationships between physical exertion measures and affect, includ-
ing intrinsic motivation, with linear regression models and analyses
of variance. In summary, we make the following contributions:
(1) An openly available set of validated virtual exergaming envi-

ronments to elicit four different emotions [144].
(2) Validated regression models describing how 10 sensor mea-

sures predict 10 types of affect across three levels of exercise
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intensity, further evidencing the linear relationships between
physiological responses and affect.

(3) Validated approaches for removing the influence of environ-
mental and personal factors from physiological sensor data,
which improve the predictive power of affect recognition and
prevent model overfitting.

(4) Validated regression models describing the relations between
physical exertion and affect.

(5) An open real-time data set (n=72) including physiological mea-
surements and subjective affect ratings for the four VEs across
the three levels of exercise intensity [145].

(6) The open source EmoSense framework [144] for the collection,
cleaning and analysis of real time physiological sensor data,
which we developed for this study.

2 RELATEDWORK
2.1 Modelling and Measuring Affect
Models of affect attempt to categorise and typify feelings and emo-
tions. Themost widely acceptedmodels are categorical, dimensional
and appraisal based approaches [34, 75, 207], with categorical and
dimensional approaches the most commonly used for automatic
analysis and prediction of affect [75, 77]. Categorical approaches
assume that there is a small number of fundamental and universally
experienced emotions, whereas dimensional models, such as the
commonly used circumplex model [153], assume that basic emo-
tions constitute a broader bipolar emotional continuum based on
the two dimensions Valence (pleasant vs unpleasant) and Arousal
(sleepy vs alert). The circumplex model has particular advantages
over categorical models, such as relativising discrete emotions and
representing their intensity [75, 153, 154].

In practice, affect is modelled and measured using several subjec-
tive, ‘ground truth’ measures that rely on users describing their emo-
tional state or rating discrete emotions, valence and arousal through
psychometric scales such as Experience Sampling [47], Pleasure-
Arousal-Dominance scale [120], Self-Assessment Manikin [27] and
Affect Slider [17]. However, there is a number of well established
and understood disadvantages to these subjective measures. For in-
stance, it is difficult to retrieve high resolution data of a participant’s
evolving emotional states, measures are influenced by participant
openness and experimenter rapport, real time measurements are
subject to the observer effect, measuring retrospectively is limited
by participant recall, and reported emotions are influenced by so-
cial desirability [75, 80]. These limitations have motivated a wide
body of research exploring automatic affect recognition through
observing the physiological changes of the body in response to
stimuli and correlating these with emotional states.

2.2 Physiological Affect Measures
In the affect recognition literature, physiological patterns have been
shown to change in response to stimuli as a consequence of sym-
pathetic nerve activation of the autonomic nervous system (ANS)
and, in principle, are indicative of changes in the underlying affect
of users [75, 77]. These changes in physiological signals are broadly
categorised into phasic and tonic changes [9, 200]. Phasic activa-
tion refers to fluctuations of a signal in a time window occurring
either spontaneously or in response to external stimuli, whereas

tonic activation refers to a gradual shift in the overall baseline ac-
tivity of a user [200]. The most common measures used are the
cardiovascular system (heart rate and respiration), electrodermal
activity (skin conductance and galvanic skin response), muscular
activity (EMG), eye activity (pupillometry and eye tracking) and
brain activity (EEG) [28, 89, 150, 169].

As Jerritta et al. [89] describe, high quality data is essential to
affect recognition systems — ensuring that emotions are elicited
‘naturally’ and that interpersonal and environmental artefacts are
removed. In the context of VR exergaming, certain physiological
measures will be more or less appropriate in building an affect
recognitionmodel. Tomotivate our choices of physiological sensors,
we describe how a measure has been utilised in the wider literature,
what emotions a particular measure has been shown to correlate
with, and what the challenges are for using these measures in the
context of VR exergaming.

2.2.1 Pupillometry. Measuring changes in pupil diameter is a well
established method for measuring activity in the brain and ANS re-
sponse [152]. Modern eye trackers provide a robust and precise mea-
sure of pupil activity and provide additional eye metrics useful for
affect recognition such as blinks, fixations and saccadic movements.
For non-VR affect recognition, both Pupil Dilation Level (PDL –
tonic) and Pupil Dilation Response (PDR – phasic) has been shown
to correlate negatively with valence [2, 10, 29, 36, 92, 125, 133, 206]
while positively correlating with arousal [29, 113, 146, 173, 194].
Pupil dilation has also been positively correlated with specific
emotions that are typically low valence and high arousal, such
as fear [37, 113, 173] and stress [132, 136].

However, in the context of VR exergaming, Barathi et al. [15]
found conflicting results with pupil dilation weakly correlating
with valence. This is an interesting finding that could be attributed
to a genuine difference in pupillary affect response under high
physical exertion or an artefact induced by the exergame virtual
environment — dilation as a reflex to luminosity. Raiturkar et al.
[146] proposed a method for decoupling the pupillary light reflex
from emotional arousal in a desktop setup by sampling pixel lumi-
nance in the user’s foveal region (a visual angle of 2◦). A similar
approach can be employed within VR for a cleaner measure of pupil
dilation, providing a more robust predictor of affect as opposed to
a predictor of the VE.

Blink metrics such as rate and duration have also been stud-
ied and correlated to affect. However, the literature is somewhat
conflicted on how blink behaviour correlates with emotional re-
sponse [15, 116, 172] and it appears to be highly dependent on the
stimuli used [116]. Despite this, blink information has been used
in multimodal ML approaches for predicting affect [3, 176], but it
remains unclear what the exact relationship is between blink mea-
sures and emotional response and whether blinks are a significant
predictor, especially in the context of VR exergames.

2.2.2 Heart Rate. Measuring the activity of the heart using electro-
cardiography (ECG) has been a common means of differentiating
between positive and negative emotions [76, 97, 130, 167]. Specif-
ically, heart rate, contractions of the heart per minute (BPM), is
an indicator of emotional arousal [199], and heart rate variability
(HRV), the oscillation between two consecutive heartbeats (inter-
beat or RR interval), is an indicator of ANS response [6, 166]. HRV, in
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particular, has wide applicability in affect recognition [89, 100, 169]
as well as affective gaming [150] and is broken down into frequency
domainmeasures, the distribution of absolute or relative power into
different frequency bands, and time domain measures, quantifying
the amount of variability in measurements of the RR interval [166].

For affect recognition, time domain measures are typically em-
ployed, with related work looking at a variety of metrics in-
cluding the standard deviation of normal to normal RR intervals
(SDNN) [41, 73, 76, 97, 130, 167, 171], root mean square of successive
RR interval differences (RMSSD) [41, 130], and percentage of succes-
sive RR intervals that differ by more than 50ms (PNN50) [41, 130].
In these studies, HRV has often been utilised in ML approaches
to predict affect outside of VR and not during exercise to predict
valence and arousal [41, 76, 130] and discrete emotions such as
fear [73, 171], stress [87] and happiness [73, 171]. Beyond ML-based
affect recognition, HRV has been shown to be positively correlated
with valence [167] and negatively correlated with negative emo-
tions such as fear [64, 135].

However, measuring heart rate in exergaming can be challeng-
ing due to noise in the signal induced by physical exertion, and it
is generally accepted that HRV is a better measure of emotional
response [191, 205]. For HRV in the context of exercise, it is estab-
lished that every energy component of HRV decreases as exercise
intensity increases [42]. Moreover, the variance of the RR interval
significantly reduces during exercise compared to rest [140]. Shaffer
et al. [166] also describe the limitations of short term (≥5 mins)
and ultra-short term (<5 mins) measures of HRV compared to 24
hour measures. As a result, it is unclear whether HRV is a robust
predictor of affect despite the limitations of measurement duration
and the effects of exercise intensity in VR exergaming.

2.2.3 Electrodermal Activity (EDA). EDA describes the changes
in the skin’s ability to conduct electricity and can be used to
understand the overall arousal of the sympathetic nervous sys-
tem [9, 49, 63, 188]. Sometimes referred to as Galvanic-Skin Re-
sponse (GSR), although this term is no longer recommended [9, 63],
EDA is typically measured through electrodes on the surface of the
skin on active areas of the body (e.g. the palm). The metrics acquired
from EDA sensors typically used in affect recognition are Skin Con-
ductance (SC), measured in micro-siemens (𝜇S), and Skin Resistance
(SR), measured in kiloohms (kohms) [63]. According to Babaei et
al., most papers in the HCI literature that utilise EDA either use
SC directly or transform their signal into SC (e.g. from SR) [9]. As
with the previously discussed physiological signals, there are two
types of measurements for Skin Conductance — phasic referred to
as Skin Conductance Response (SCR), and tonic referred to as Skin
Conductance Level (SCL).

These EDA measures are widely used in affect recognition, espe-
cially for detecting emotional arousal, in which SCL and SCR have
both been shown to positively correlate with arousal [15, 29, 155].
Moreover, SC has been observed to correlate with specific emo-
tions: for example, both SCL and SCR positively correlate with
fear [65, 103, 203] and stress [22, 179], whereas SCL negatively cor-
relates [210] and SCR positively correlates [95, 210] with happiness.
SCR has also been found to parallel other physiological measures
such as pupil dilation for both high and low valence stimuli [29].

Additionally, EDA is often incorporated into multimodal MLmodels
for affect recognition [8, 72–74, 89, 97, 98, 105, 149].

However, measuring tonic and phasic EDA in VR exergaming,
especially for high intensity exercise, poses significant challenges.
For example, both exercise intensity and duration have a large im-
pact on the amount of sweat the body produces and therefore can
significantly influence both phasic and tonic EDA [21, 142, 143].
The exercise activity within a VR exergame can also induce motion
artefacts and noise in the EDA signal, resulting in EDA becoming a
less robust measure of affect. Another compounding factor is posed
by the perceptible and sometimes imperceptible effects of using a
VR HMD, such as motion sickness, which can influence SCR [69].
Despite these challenges, Barathi et al. [15] demonstrated EDA posi-
tively correlating with arousal in high intensity VR exergaming. Yet,
it remains unclear how EDA correlates with valence and discrete
emotions. With this in mind, it is also unclear how robust EDA is
as an affect predictor across different exercise intensities and what
data cleaning steps may be necessary to maintain predictive power.

2.2.4 Facial Tracking. Recent studies have also explored facial mus-
cle activation (facial expressions) as measured by electromyography
(fEMG) as an indication of emotional response [210]. Specifically, ac-
tivation of the zygomaticus major, the muscle that controls smiling,
is an indication of positive valence, and the corrugator supercilii,
the muscle that controls frowning, is an indication of negative va-
lence [33, 210]. Importantly, facial gestures and fEMG response
follow the same tonic and phasic activation as previously discussed
physiological metrics [70, 94]; however, both zygomatic and corru-
gator activity can exhibit more or less phasic modulation depending
on the stimuli [70].

In non-VR and non-exergaming contexts, fEMG has been ex-
plored widely for affect recognition, with zygomatic activation
positively correlating with valence [109, 159, 182] and arousal in
the presence of high valence [148, 209]. As with the previously
discussed physiological measures, fEMG has been incorporated
into multimodal ML approaches for predicting affect [86, 171, 181]
and has even been used to predict discrete emotions such as fear,
happiness and sadness [171].

In VR exergaming, there are practical challenges to incorporat-
ing facial tracking. A VR HMD typically obscures a user’s face,
especially the corrugator supercilii muscle, and may also inhibit
muscle activation. Additionally, fEMG electrodes may be subject to
mechanical interference and electrical noise from the HMD [189].
However, commercially available face and lip trackers designed
for VR HMDs 1 2 provide blend shapes and gesture estimations of
part of a user’s face and, importantly, the zygomatic major muscles.
While promising, these tracking techniques are primarily designed
for conventional VR experiences and it is unclear how different lev-
els of physical movement and exertion will influence the predictive
power of facial tracking in affect recognition.

2.2.5 Other Measures. Other physiological signals have been used
in affect recognition, such as brain activity [25, 88, 180], the respi-
ratory system and skin temperature [89, 169]. However, for high
intensity exercise and VR exergaming we have chosen to exclude

1https://www.vive.com/uk/accessory/facial-tracker/
2https://business.vive.com/us/product/vive-focus-3-facial-tracker/
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these measures. For brain activity measures such as EEG, motion
artefacts and electrical interference pose a significant challenge
when used for affect recognition, especially when used in the con-
text of exercise [55] and VR [184]. For both respiration and skin
temperature measures, the influence of exercise and environmental
factors [67] also make it challenging to decipher affective response,
especially in the context of high intensity exergaming.

3 AFFECTIVE VIRTUAL ENVIRONMENT
DESIGN

To address RQ1 we designed four distinct VR exergame Virtual
Environments (VEs), each designed to target different quadrants
of Russell’s circumplex model [153, 154]. We refer to these differ-
ent VEs by the emotions they target — Happy, Calm, Stress and
Sadness. The exergame was designed in the Unity engine3 and
allows users to cycle through the different emotion VEs using an
exercise bike while they gain points by collecting coins, avoiding
obstacles or simply pedalling. Each VE simulates a different virtual
bike ride and game experience, with the specific design choices
for each guided by existing literature on emotion elicitation and
stimuli [77, 97, 149, 161, 177, 208], as well as affective game de-
sign [32, 150] and gamification theory [99, 165]. All four VEs vary
by game mechanics, terrain, environmental objects, lighting and
colour scheme, and sound design. We composed music soundtracks
based on research by Fernández-Sotos et al. [60] and Liu et al. [114]
which mapped music tempo and note length to the circumplex
model. We used a tempo of 150 beats per minute (bpm) and six-
teenth notes for high arousal emotions, and 90 bpm and whole/half
notes for low arousal emotions. The work of Ng and Nesbitt [131]
informed the design of sound effects and audio feedback within
each emotion VE.

In order to achieve a robust dataset for correlating physiologi-
cal response to affect [89], the exergame VEs should be validated
across different exercise intensities to ensure that: (i) the VEs elicit
the correct target emotions (e.g. feeling stressed in the stress VE),
and (ii) the dominant emotion in each VE aligns with the targeted
emotion (e.g. within the stress VE, stress is elicited significantly
more than dissimilar emotions). Through extensive pilot testing,
described in subsection 4.5, we were able to validate the efficacy
of the environments before conducting the main study. We then
further validated the virtual environments as part of the main study,
as described in section 5.

3.1 Negative Valence Virtual Environments
Geslin et al. [66] describe how environmental colour schemes, light-
ing and game objects can elicit emotion. To target negative valence
(stress/sadness), the negative VEs contained the following features:
desaturated colours, darkness, and dirt. For the VR environment
colour schemes, we primarily manipulated the skybox with the
specific choice of colour informed by Dharmapriya et al. [50] who
mapped Itten’s colour system [40] to Russell’s circumplex model of
affect [153]. In this case, we used a gradient of pink for the Stress
VE and blue for the Sadness VE. These colour choices were also
supported by research on how colours can be used in construct-
ing emotions by interactive digital narratives [185]. The feature
3https://unity.com/products/unity-engine

of dirt [66] was also incorporated into both the stress and sadness
VEs. A mostly mud landscape was used for the Sadness VE with
a sparse distribution of dead grass and obstructing dirty road ob-
jects. The Stress VE landscape was also designed to look barren
but incorporated more claustrophobic and stress inducing elements
such as surrounding steep rocky cliffs, burnt trees, boulders, fire,
pressuring text (e.g. “hurry!”, “collect the coins quickly!”), and a
timer. Additional features were added to both negative valence VEs
that were incorporated in previous VR exergames [13, 15] including
a chasing police car and barking dogs in the Stress VE and heavy
rain in the Sadness VE.

In both the Stress and Sadness VEs, we incorporated a coin col-
lecting game mechanic in which users can accrue points by leaning
left or right and intersecting their heads with a coin. For each coin
collected, the user typically gains a point and hears a positive re-
ward sound effect [131]. However, in the Stress VE skull coins were
added to introduce the feature of ‘loss’ [66] and ‘consequence’ [99].
When collected, these coins deduct ten points and a harsh buzzer
sound effect is emitted [131]. This mechanic parallels the VR ex-
ergame by Barathi et al. [13, 15] where points are deducted when
colliding with traffic. In the Sadness VE, ‘loss’ was implemented
differently, whereby instead of deducting points the number of
coins available was greatly reduced. This was intended to create a
larger feeling of ‘loss’ [66] with sparse ‘rewards’ [99, 165] in com-
parison to the other VEs. The coins in the Sadness VE also had a
rusted appearance and produced a less satisfying sound effect when
collected to further decrease the positive feedback compared to
other VEs [32, 99, 131]. The soundtrack for the Stress VE included
discordant high pitched notes, while the Sadness VE contained
distant melancholic sound effects [60, 114].

3.2 Positive Valence Virtual Environments
Informed by the same literature as the negative valence VEs [50,
66, 185], the Happy and Calm VEs’ skybox colour schemes were
orange and turquoise, respectively. Wildflowers were added to their
landscapes and, using directional light, shadows passing over them
gave the effect of natural light [66]. Heads up display text played a
different role in the positive valence VEs to feature interaction and
positively reinforcing feedback in the environment [32, 66, 99, 165].
For the Happy VE, the text included motivational and positive
messages, whereas theCalmVE included guided breathing exercise
instructions and meditative messages such as ‘Calm your mind’.

For the Happy VE, coins were far more abundant and heart
shaped gems appeared that offered 10 bonus points, vastly increas-
ing the ‘reward schedule’ [99] and increasing ‘earnings’ [66]. Ad-
ditionally, a wide variety of animated game objects with sound
effects were included such as rabbits running through the fields,
colourful birds singing and hot air balloons [131]. The abundance
of environmental objects encouraged users to look outwards and
upwards to the expansive landscape and skybox, contributing to
the features of wide shots and open spaces [66]. For the Calm VE,
coin collection was replaced with the instruction to ‘Gently pedal
for points’. This allowed the user to be rewarded with one point for
every 2 seconds of cycling. A fundamental concept of calmness and
serenity is minimising distractions [46], and users are encouraged

https://unity.com/products/unity-engine
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to focus solely on experiencing the environment while still main-
taining a positive ‘reward schedule’ [66, 99]. The soundtrack for
the Happy VE included upbeat vocal and chanting sound effects,
whereas the Calm VE soundtrack maintained a consistent rhythm
and was purely instrumental [60, 114].

3.3 Neutral Virtual Environment
This VE aimed to elicit no particular emotion and was used as a
transition between each of the emotion VEs in order to reduce any
carryover effects. To achieve this, the skybox was set to white as
this shade is at the centre of Ittin’s colour system as mapped by
Geslin et al. [66]. The landscape had a flat elevation profile, plain
green terrain and no objects of interest (see Figure 2).

4 METHODOLOGY
To address our research questions, we designed an experiment using
the aforementioned exergame, in which users cycled through the
four VEs at different exercise intensities while physiological data
was recorded. The experiment followed awithin-participants design
with exercise intensity (three levels) and Emotion VE (four levels)
as independent variables. Each 90-minute experimental session
included one low, one medium, and one high-intensity exercise
bout in which the four emotion VEs each were experienced for 60
seconds each (3 × 4 = 12 Emotion VE exposures).

Each exercise intensity was scaled as a percentage Heart Rate
Reserve (HRR), the difference between a participant’s age-predicted
maximal heart rate (HRMAX) [168] and resting heart rate, which is
often used in calculating exercise training capacity. Low exercise
intensity was defined as 50-60% of participant HRR, medium as
60-70%, and high as 70-80%. These HRR ranges are typical for each
exercise intensity and were also validated through pilot testing. The
orders of exercise intensity and Emotion VE were counterbalanced
using a balanced Latin square design.

4.1 Apparatus
The VR exergame developed for this study, described in Section 3,
required participants to cycle on a stationary Wahoo KICKR exer-
cise bike while wearing a Vive Pro Eye VR headset. Physiological
measures were collected using the eye tracker in the VR headset
(pupillometry), a Shimmer3 GSR+ tethered to a participant’s middle
and ring finger (EDA) [48], a Polar H10 HR monitor chest strap
(HR and HRV) [162], and a Vive face tracker (facial tracking). All
physiological measures were sent to a PC (Intel 13900K, Nvidia GTX
4090 and 64GB of DDR5 RAM) running the Unity VR exergame
over Bluetooth (BLE protocol), which recorded all measures at a
sample rate of 40-50 Hz using the EmoSense SDK [144].

4.2 Measures
4.2.1 Ground Truth Measures of Affect. We collected affect
ground truth ratings using a combination of experience sampling
(ESM) [47] and Pleasure-Arousal (PAD) sampling [120] adminis-
tered within the VEs. To measure discrete categorical emotions, we
used 11-point rating scales (0-10) for Fear, Excitement, Stress, Hap-
piness, Sadness, Calmness, Boredom and Contentedness (0 being
the least amount of that emotion possible and 10 being the most).
To measure valence and arousal, we used the Affective Slider [17],

a validated scale that builds on the Self-Assessment Manikin [27].
The Affective Slider questions were also administered on an 11-
point rating scale (0-10). Using 11-point rating scales is a validated
approach for collecting data that can be analysed on an interval
scale; this is supported by both theory and simulation [79, 204] and
has previously been validated for measuring affect in an exercise
context [78, 187]. Such interval-scaled data can be analysed with
parametric statistical techniques such as repeatedmeasures ANOVA
and linear regression, given all their assumptions are sufficiently
met [4, 102].

Russel’s circumplex model describes the linear relationships be-
tween categorical emotions and its two dimensions valence and
arousal [153, 154], e.g. Stress indicates low valence and high arousal.
This means multi-item measures of valence and arousal can be de-
rived by weighting the points corresponding to each categorical
emotions in the circumplex model by their respective emotion
rating, yielding weighted averages based on all eight categorical
emotion ratings. Such multi-item measures outperform single items
with regard to predictive validity [51, 156], therefore we use them
as our primary measures of Valence and Arousal. During our anal-
yses, we confirmed that the multi-item measures were significantly
correlated with the single items of the Affect Slider but were more
robust in avoiding assumption violations and predicting affect from
physiological measures. More details about the multi-itemmeasures
can be found in the Supplementary Material.

4.2.2 Physiological Sensor Measures. We collected phasic and tonic
physiological metrics known to be associated with affect. For pupil-
lometry, we measured pupil dilation level (PDL) as the mean pupil
size in millimetres (mm) and the dilation response (PDR) as the
standard deviation of the pupil size. The standard deviation has pre-
viously been found a useful measure for quantifying series of phasic
dilation responses during prolonged and continuous exposure to
stimuli [5, 164], as is the case in our exergame. Blink rate (BR) was
measured as blinks per minute, and blink duration (BD) in millisec-
onds (ms). For EDA we measured Skin Conductance Level (SCL)
and Skin Conductance Response (SCR) in microsiemens (𝜇S). For
SCR we specifically calculate the ’EDA positive change’ [112], an
approach for measuring SCR during continuous exposure to stim-
uli such as our exergaming VEs. For facial tracking, we measured
the movement of the zygomaticus major (Smile) using the Vive
facial tracker blend shape weightings for Mouth_Smile [193]. For
HR and HRV, we measured beats per minute (BPM) and inter-beat
(RR) intervals (ms) which were then used to compute SDNN and
RMSSD [166]. The power output (watts) of cycling was measured
through the exercise bike.

4.2.3 Other Measures. We recorded participants’ overall enjoy-
ment of the VR exergame after each exercise bout at a given in-
tensity using the Intrinsic Motivation Inventory (IMI) [13, 119], a
7-point Likert scale (1=“not at all true”, 4=“somewhat true”, 7=“very
true”) that measures different aspects of intrinsic motivation. Specif-
ically, we considered the Interest/Enjoyment (7 items), Pressure/Ten-
sion (5 items), and Perceived Competence (6 items) subscales, which
are well-validated for use in an exercise context and have been used
in prior VR exergaming studies [13, 15].
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Figure 2: Left: The Neutral virtual environment participants cycled in during warm up and cool down. Middle: The real time
HR visualiser to guide participants into the right HR range for a given exercise intensity. Right: The ground truth measures
administered to participants in VR using experience sampling and Affective Slider.

4.3 Data Cleaning
We considered three levels of data cleaning, raw, env, and pers,
which build on one another and increasingly remove the influence
of factors unrelated to affect.

4.3.1 No Cleaning (Raw). This level does not change the measures
as provided by the sensors, i.e. does not remove effects unrelated
to affect. It serves as a baseline to compare the next levels against.

4.3.2 Environmental Cleaning (Env). This level aims to removes
outliers, e.g. caused by body movements or the HMD, by removing
values that were clearly erroneous or fell far outside the typical
ranges reported in the literature. For pupil dilation, values were
filtered out when the pupils were not tracked such as during blinks.
For calculating blink duration and blink rate, we defined a successful
blink as both eyes being closed for ≥50ms and <700ms [58, 106]. For
EDA we removed negative skin conductance values. For HR, values
that had an RR-interval of less than 200ms and more than 2000ms
were removed [91, 93, 166]. For HRV we additionally applied the
age based filtering algorithm for RR-intervals proposed by Karlsson
et al. [91], which is uses recursive filtering to remove changes in RR-
intervals that are unlikely given a participant’s age [201, 202]. For
facial tracking, blank cells where tracking and pose estimation were
lost as determined by the Vive Sranipal SDK [193] were removed.

Furthermore, we removed artefacts induced by the VEs and exer-
cise, which is important to avoid a model overfitting VE stimuli or
exercise-related effects rather than predicting a user’s affective re-
sponse. As environmental luminosity can interfere with pupil mea-
sures, we applied the approach proposed by Raiturkar et al. [146]
to remove the influence of the pupillary light reflex triggered by
light changes in the VEs. This involved taking baseline measures
of each pupil at 16 different luminosity levels with no emotional
stimuli present in VR (pilot testing showed the eight luminosity
levels recommended by Raiturkar et al. did not provide enough
granularity when applied in VR). Pupil dilation values were then
corrected in real time based on the observed foveal luminosity
(2◦ visual angle of the VE at the point of gaze estimated by the
HMD eye gaze tracker) by subtracting the baseline. For EDA, we
removed the influence of pre-existing sweat by calculating the log-
transformed ratio of the current skin conductance and the baseline
PDL measured immediately before each VE exposure [16, 30, 192].

4.3.3 Personalised Cleaning (Pers). Here we combined the prior
cleaningmethods withmethods to remove interpersonal differences

Figure 3: Overview of the procedure for one exercise bout at
a given exercise intensity. Red cells denote a warm up phases
and blue cells denote cool down phases, both in the Neutral
VE. Grey squares denote an exposure phase of 60-seconds in
an Emotion VE.

for each physiological measure and rating of affect. EDA is influ-
enced by individual differences in eccrine activity [157, 158], PD
and BR by different pupillary sensitivities [81], HR/HRV by different
parasympathetic and sympathetic stimulation of the heart [38, 101],
and Smile by differences in zygomaticus major activity [163]. We
account for a participant’s natural baseline and spread in physio-
logical measures by applying z-score transforms, subtracting the
participant’s mean and dividing by their standard deviation [196]
as estimated from the participant’s collected data, which can im-
prove the predictive power of measures [7, 15, 16]. Similarly, we
also apply z-score transforms to all affect rating measures to correct
for personal response biases [62, 121].

4.4 Procedure
Participants were screened with the Physical-Activity Readiness
Questionnaire (PARQ) [186] and a custom VR screening question-
naire, which excluded participants who were susceptible to health
risks of high-intensity exercise and using VR technology. We pro-
vide both screening questionnaires in the Supplementary Material.
The remaining participants gave informed consent and completed
a demographics questionnaire. Participants were then familiarised
with the exercise bike, setting a comfortable initial pedal resis-
tance and position. The experimenter then fitted the physiological
sensors, adjusted the Inter-Pupillary Distance (IPD) of the HMD,
calibrated the eye gaze tracker using a standard 5 point calibra-
tion, recorded baseline pupil diameter measures under different
levels of luminosity [146], and performed a basic eye test to ensure
participants could read any text in the VEs.
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When ready, participants started the exergaming exposure pro-
tocol illustrated in Figure 3. During each warm up phase in the
Neutral VE, a visualisation of actual and target HR to enable partic-
ipants to reach the desired level of exercise intensity (see Figure 2).
Participants were free to increase or decrease the bike resistance,
staying in the warm up phase until they maintained the target HR
for 10 seconds. Participants were then exposed to one of the Emo-
tion VEs for 60 seconds. During pilot testing we found 60 seconds
sufficient to induce emotions and obtain meaningful physiological
measures while avoiding confounding factors such as physical ex-
haustion, especially for the high-intensity condition. Prior work
has shown such short exposures are sufficient to elicit emotions
and measure affect [15, 52].

Afterwards participants were transitioned back to the Neutral
VE for a cool down phase, in which they answered the affect rating
questions verbally (see Figure 2). Once ready, participants tran-
sitioned once again to the warm up phase for another Emotion
VE. Warm up, exposure, and cool down were repeated four times
in each bout of exercise. After completing an exercise bout for a
given intensity, participants exited VR and completed the IMI ques-
tionnaire. Participants were able to take a break during this period
before re-entering VR and beginning the next exercise bout.

4.5 Pilot Study
To validate the VEs andmethodology for the main study, and inform
our hypotheses, we conducted a pilot study with 29 participants (16
male, 13 female, age 19-33𝑀 = 25, 𝑆𝐷 = 3). The methodology was
very similar to that of the main study, but limited in the number
of physiological sensors (SCL, PDL, HR, BD, and BR), metrics, and
cleaning approaches used. The detailed results and analysis R scripts
can be found in Supplementary Material.

4.6 Hypotheses
For manipulating affect (RQ1), we have the following four families
of a-priori hypotheses for each of the four VEs. They are based on
the differences in valence and arousal between the four quadrants
of Russell’s circumplex model [153, 154] that are targeted by our
four VEs, and are also corroborated by the pilot data. We distinguish
comparisons between VEs (H1-H3), which compare the effects differ-
ent VEs have on the same affect measure, and comparisons within
VEs (H4), which compare the effects a single VE has on different
affect measures:

H1: Each VE elicits more of its target emotion than other VEs (e.g.
the Happy VE elicits more Happiness than the other VEs).

H2: The high valence VEs elicit higher valence than the low va-
lence VEs (i.e. the Happy and Calm VEs elicit higher valence
than the Stress and Sad VEs).

H3: The high arousal VEs elicit higher arousal than the low arousal
VEs (i.e. the Happy and Stress VEs elicit higher arousal than
the Calm and Sad VEs).

H4: Each VE elicits more of its target emotion than of the emotions
targeted by the other VEs (e.g. the Happy VE elicits more
Happiness than eliciting Calmness, Stress, and Sadness).

Table 1: Hypotheses about the physiological measures that
predict specific affect ratings during VR exergaming (high-
lighted cells). Each cell summarises the evidence for a posi-
tive (+), negative (-), or unclear (?) relationship.

Affect PDL / PDR SCL / SCR HRV Smile Power

Valence + : [15]

- : Pilot, [2, 29]
[36, 92, 125]
[133, 206]

? : [104, 134]

+ : [167]

? : [76, 130]

+ : [109, 159]
[182]

- : [187, 190]

? : [86]

+ : [15]

- : [53, 137]
[18, 187]

Arousal + : Pilot, [113]
[146, 173, 194]

+ : [15, 29]
[155]

? : [8]

+ : [90, 107]
[183]

Fear + : Pilot, [37]
[173]

+ : [18, 53]
[137, 183]

Stress + : Pilot, [132]
[136]

? : [12]

+ : [22, 179]

? : Pilot, [136]

+ : [18, 53]
[137, 183]

Happiness - : Pilot - : Pilot [210] + : [54, 210]

? : [171]

Sadness + : Pilot, [37]

Boredom + : Pilot

- : [195]

Content-
edness

- : Pilot + : [109, 159]
[182]

- : [187, 190]

? : [86]

Calmness - : Pilot + : [90, 107]
[183]

Details about all the hypotheses in each family are provided in
the Extended Analysis Report in Supplementary Material. For pre-
dicting affect in VR exergaming (RQ2), Table 1 provides an overview
of affect rating measures together with their hypothesised physio-
logical predictors (in grey). The hypotheses are undirected and are
based on the pilot study results and affect recognition literature.
Each table cell summarises evidence for a positive (+) and negative
(-) relationship, as well as citing works where the relationship is un-
clear (?). Excitement has no hypothesised physiological predictors
due to a lack of clear results in the pilot study and wider literature
and, as a result, is excluded from the table. For the same reason, we
excluded columns for blink rate, blink duration, and heart rate.

4.7 Participants
We recruited 72 participants (𝑀𝑎𝑙𝑒 = 43, 𝐹𝑒𝑚𝑎𝑙𝑒 = 27, 𝑁𝑜𝑛-
𝐵𝑖𝑛𝑎𝑟𝑦 = 1,𝑂𝑡ℎ𝑒𝑟 = 1) who were predominantly staff and stu-
dents of the University of Bath. Participants were aged 18-60 (𝑀 =

32.542, 𝑆𝐷 = 11.334) and, according to the results of the Interna-
tional Physical Activity Questionnaire (IPAQ) [43, 111], most partici-
pants had high physical activity (𝐻𝑖𝑔ℎ = 42, 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 = 28, 𝐿𝑜𝑤 =

2). Most participants had used VR occasionally (𝑂𝑐𝑐𝑎𝑠𝑖𝑜𝑛𝑎𝑙𝑙𝑦 =

49, 𝑁𝑒𝑣𝑒𝑟 = 20,𝑊 𝑒𝑒𝑘𝑙𝑦 = 2, 𝐷𝑎𝑖𝑙𝑦 = 1) and had played video
games occasionally (𝑂𝑐𝑐𝑎𝑠𝑖𝑜𝑛𝑎𝑙𝑙𝑦 = 44, 𝐷𝑎𝑖𝑙𝑦 = 15,𝑊 𝑒𝑒𝑘𝑙𝑦 =

10, 𝑁𝑒𝑣𝑒𝑟 = 3). A total necessary sample size of 72 participants was
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calculated using G*Power 3.1.9.7 [59] analysis for multi-level linear
regression with 3 predictors; which would be able to detect small
effects (Effect Size: 0.15, Power: 0.85, alpha: 0.05).

5 RESULTS
This section provides an overview of the analysis strategy and
summarises the main study results for each research question. All
analyses were carried out using R 3.1 and JASP 0.18.1. The detailed
R scripts and JASP files used to perform the analyses and create
the results can be found in the Extended Analysis Report in Sup-
plementary Material.

5.1 RQ1: Affect Manipulation
Figure 4 shows boxplots of the affect ratings of the four VEs across
all participants, providing an overview of how different types of
emotions were elicited in each environment.

5.1.1 Comparisons Between VEs (H1-H3). We tested the normality
assumption of Analysis of Variance (ANOVA) using Shapiro-Wilk
tests and by inspecting QQ-plots, and decided to use non-parametric
test alternatives to address any concerns about violations of normal-
ity. We tested the overall effects of our four VEs on valence, arousal,
and the four target emotions using Friedman tests, followed by
pairwise Wilcoxon signed-rank tests with Holm–Bonferroni correc-
tion using the coin R package [83]. The main effects of the VEs on
valence, arousal, and the four target emotions were all significant
(𝜒2 ≥ 89.891,𝑊 ≥ 0.416, 𝑝 < .001∗∗∗).

Table 2 summarises the results of all pairwise comparisons based
on the median affect ratings across the three exercise intensity lev-
els. The results hypothesised by H1-H3, which are highlighted in
yellow and blue, are all highly significant (𝑝 < .001∗∗∗). Our more
detailed results in the Extended Analysis Report in Supplementary
Material test each exercise intensity level separately and confirm
these results except that the Happy VE did not elicit significantly
more Happiness than the Calm VE during high-intensity exercise.
This is likely due to the similar and non-exclusive nature of happi-
ness and calmness. Overall, our results support H1-H3, indicating
that the VEs elicit the emotions they are targeting and achieve the
right levels of valence and arousal in relation to one another. For
more details on the test methodology and results, please refer to
the Extended Analysis Report in Supplementary Material.

5.1.2 Comparisons Within VEs (H4). In order to make measures for
different emotions comparable (e.g. happiness and stress), person-
alised cleaning with z-score transforms was applied to each emotion
measure [1, 196]. This removes response biases, which affect the
different emotion measures differently and hence hamper compar-
isons between them [62, 121]. We tested the normality assumption
of ANOVA using Shapiro-Wilk tests and by inspecting QQ-plots,
and decided to use non-parametric test alternatives to address any
concerns about violations of normality. We tested the overall effects
of the type of target emotion (Happy, Stress, Calm, Sad) on the four
target emotion measures using Friedman tests, followed by pair-
wise Wilcoxon signed-rank tests with Holm–Bonferroni correction
between the different target emotion measures using the coin R
package [83].

Figure 4: Boxplots showing all 10 affect ratings from all par-
ticipants across the four VEs: Happy, Stress, Calm, & Sad.

The main effects of the type of target emotion on the target
emotion measures were all significant (𝜒2 ≥ 78.632,𝑊 ≥ 0.364,
𝑝 < .001∗∗∗). Table 3 summarises the results of all pairwise compar-
isons based on the median affect ratings across the three exercise
intensity levels. The non-empty table cells show the results for all
the hypotheses of family H4; all comparisons are highly significant
(𝑝 < .001∗∗∗). Our more detailed results in the Extended Analy-
sis Report in Supplementary Material test each exercise intensity
level separately and confirm these results except that the Calm VE
did not elicit significantly more Calmness than Happiness during
high-intensity exercise. This is likely due to the similar and non-
exclusive nature of happiness and calmness. Overall, our results
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Table 2: RQ1 results: Comparisons between VEs of the elicited valence, arousal, and target emotions (H1-H3) across the three
levels of exercise intensity based on median affect ratings. Each row reports the comparisons between the two VEs a and b
listed in the first two columns. The cells with the hypothesised results are highlighted either in yellow meaning the hypothesis
is “VE a elicits more than VE b”, or in blue meaning “VE b elicits more than VE a”. Cells show the means 𝑎 and 𝑏 and standard
deviations 𝜎 for the two VEs, and non-parametric Wilcoxon signed-rank test results with effect size 𝑟 (𝑟 < 0.3 for ‘small’,
0.3 ≥ 𝑟 < 0.5 for ‘moderate’, and 𝑟 ≥ 0.5 for ‘large’). For separate Wilcoxon signed-rank tests for each exercise intensity level
please refer to the Extended Analysis Report in Supplementary Material.

VE Comparison Valence Arousal Happy Stress Sad Calm

𝑎) Happy VE 𝑏) Stress VE

𝑎= 0.438, 𝜎= 0.133
𝑏= 0.153, 𝜎= 0.199
𝑍 = 12.694, 𝑟= .864
𝑝<.001∗∗∗

𝑎= -0.072, 𝜎= 0.096
𝑏= 0.052, 𝜎= 0.157
𝑍 = -10.609, 𝑟= -.722
𝑝<.001∗∗∗

𝑎= 6.083, 𝜎= 1.734
𝑏= 4.125, 𝜎= 1.919
𝑍 = 11.692 𝑟= .796
𝑝<.001∗∗∗

𝑎= 1.500, 𝜎= 1.427
𝑏= 4.681, 𝜎= 2.320
𝑍 = -12.304, 𝑟= -.837
𝑝<.001∗∗∗

𝑎= 0.681, 𝜎= 0.986
𝑏= 1.931, 𝜎= 2.041
𝑍 = -10.174, 𝑟= -.692
𝑝<.001∗∗∗

𝑎= 5.639, 𝜎= 1.809
𝑏= 3.028, 𝜎= 1.830
𝑍 = 12.359, 𝑟= .841
𝑝<.001∗∗∗

𝑎) Happy VE 𝑏) Sad VE

𝑎= 0.438, 𝜎= 0.133
𝑏= 0.236, 𝜎= 0.220
𝑍 = 11.157, 𝑟= .759
𝑝<.001∗∗∗

𝑎= -0.072, 𝜎= 0.096
𝑏= -0.147, 𝜎= 0.149
𝑍 = 9.807, 𝑟= .667
𝑝<.001∗∗∗

𝑎= 6.083, 𝜎= 1.734
𝑏= 4.139, 𝜎= 1.922
𝑍 = 11.402, 𝑟= .776
𝑝<.001∗∗∗

𝑎= 1.500, 𝜎= 1.427
𝑏= 2.264, 𝜎= 2.133
𝑍 = -6.353, 𝑟= -.432
𝑝<.001∗∗∗

𝑎= 0.681, 𝜎= 0.986
𝑏= 2.417, 𝜎= 2.271
𝑍 = -10.821, 𝑟= -.736
𝑝<.001∗∗∗

𝑎= 5.639, 𝜎= 1.809
𝑏= 5.125, 𝜎= 1.653
𝑍 = 5.302, 𝑟= .361
𝑝<.001∗∗∗

𝑎) Happy VE 𝑏) Calm VE

𝑎= 0.438, 𝜎= 0.133
𝑏= 0.422, 𝜎= 0.134
𝑍 = 1.269, 𝑟= .086
𝑝=.204

𝑎= -0.072, 𝜎= 0.096
𝑏= -0.148, 𝜎= 0.101
𝑍 = 10.404, 𝑟= .708
𝑝<.001∗∗∗

𝑎= 6.083, 𝜎= 1.734
𝑏= 5.722, 𝜎= 1.630
𝑍 = 5.0467, 𝑟= .343
𝑝<.001∗∗∗

𝑎= 1.500, 𝜎= 1.427
𝑏= 1.444, 𝜎= 1.619
𝑍 = 2.570, 𝑟= .175
𝑝=.010∗

𝑎= 0.681, 𝜎= 0.986
𝑏= 0.833, 𝜎= 1.056
𝑍 = -3.187, 𝑟= -.217
𝑝=.001∗∗

𝑎= 5.639, 𝜎= 1.809
𝑏= 6.292, 𝜎= 1.732
𝑍 = -5.145, 𝑟= -.350
𝑝<.001∗∗

𝑎) Calm VE 𝑏) Stress VE

𝑎= 0.422, 𝜎= 0.134
𝑏= 0.153, 𝜎= 0.199
𝑍 = 12.671, 𝑟= .862
𝑝<.001∗∗∗

𝑎= -0.148, 𝜎= 0.101
𝑏= 0.052, 𝜎= 0.157
𝑍 = -12.022, 𝑟= -.818
𝑝<.001∗∗∗

𝑎= 5.722, 𝜎= 1.630
𝑏= 4.125, 𝜎= 1.919
𝑍= 10.049, 𝑟= .684
𝑝<.001∗∗∗

𝑎= 1.444, 𝜎= 1.619
𝑏= 4.681, 𝜎= 2.320
𝑍 = -12.449, 𝑟= -.847
𝑝<.001∗∗∗

𝑎= 0.833, 𝜎= 1.057
𝑏= 1.931, 𝜎= 2.041
𝑍 = -8.695, 𝑟= -.592
𝑝<.001∗∗∗

𝑎= 6.292, 𝜎= 1.732
𝑏= 3.028, 𝜎= 1.830
𝑍 = 12.716, 𝑟= .866
𝑝<.001∗∗∗

𝑎) Calm VE 𝑏) Sad VE

𝑎= 0.422, 𝜎= 0.134
𝑏= 0.236, 𝜎= 0.220
𝑍 = 11.428, 𝑟= .778
𝑝<.001∗∗∗

𝑎= -0.148, 𝜎= 0.101
𝑏= -0.165, 𝜎= 0.134
𝑍 = 1.148, 𝑟=.078
𝑝=.251

𝑎= 5.722, 𝜎= 1.630
𝑏= 4.185, 𝜎= 2.098
𝑍 = 10.298, 𝑟= .701
𝑝<.001∗∗∗

𝑎= 1.444, 𝜎= 1.619
𝑏= 2.394, 𝜎= 2.224
𝑍 = -5.997, 𝑟= -.408
𝑝<.001∗∗∗

𝑎= 0.833, 𝜎= 1.057
𝑏= 2.417, 𝜎= 2.271
𝑍 = -10.093, 𝑟= -.687
𝑝<.001∗∗∗

𝑎= 6.292, 𝜎= 1.732
𝑏= 5.125, 𝜎= 1.653
𝑍 = 9.231, 𝑟= .628
𝑝<.001∗∗∗

𝑎) Stress VE 𝑏) Sad VE

𝑎= 0.153, 𝜎= 0.199
𝑏= 0.236, 𝜎= 0.220
𝑍= -6.234, 𝑟= -.424
𝑝<.001∗∗∗

𝑎= 0.052, 𝜎= 0.157
𝑏= -0.165, 𝜎= 0.134
𝑍 = 12.541, 𝑟= .853
𝑝<.001∗∗∗

𝑎= 4.125, 𝜎= 1.919
𝑏= 4.139, 𝜎= 1.922
𝑍 = -0.164, 𝑟= -.011
𝑝=.870

𝑎= 4.681, 𝜎= 2.320
𝑏= 2.264, 𝜎= 2.133
𝑍 = 11.673, 𝑟= .794
𝑝<.001∗∗∗

𝑎= 1.931, 𝜎= 2.041
𝑏= 2.417, 𝜎= 2.271
𝑍 = -4.343, 𝑟= -.296
𝑝<.001∗∗∗

𝑎= 3.028, 𝜎= 1.830
𝑏= 5.125, 𝜎= 1.653
𝑍 = -11.729, 𝑟= -.798
𝑝<.001∗∗∗

support H4 that each VE elicits more of its target emotion than of
the emotions targeted by the other VEs. For more details on the
test methodology and results, please refer to the Extended Analysis
Report in Supplementary Material.

5.2 RQ2: Affect Recognition
We used multi-level linear regression models from the R nlme pack-
age [20] to test the hypothesised physiological predictors (Table 1)
for each affect variable, because of the power of such models when
comparing repeated measures data [39, 138]. We confirmed the as-
sumptions for linear regression by inspecting residual plots [4, 102].
In our regression tables (Table 4 and Table 5), coefficients aremarked
with �𝐿 if they violate linearity and marked with�𝐻 if they violate
heteroskedasticity. Coefficients of determination R2 are marked
with�𝑁 if the normality of residuals is violated. Note that violations
do not render a model useless – such a model can still have a high R2

and be useful in practice. However, violations render the p-values
of coefficients inaccurate, so they need to be considered with care.
We also mark coefficients with unbalanced residual plots with 𝑈 .
While this does not violate the assumptions of linear regression, it
indicates that the model can likely be improved by transforming
the data, e.g. by applying a further level of cleaning.

When validating a regression model, we first included only those
physiological sensor measures in the model that were hypothesised
to predict an affect variable. The regression coefficients, which rep-
resent the linear effects of sensor measures on the affect variable,
were tested with two-tailed tests at 𝛼 = .05. We then used Chow
tests to detect discontinuities between different levels of exercise
intensity [110], e.g. to detect whether the regression coefficients
changed sufficiently between low-intensity and medium-intensity
exercise to warrant separate regression models for them. That is, we
merge the regression results of two exercise levels only if their coef-
ficients are sufficiently similar. We conducted two such Chow tests,
to determine whether low and/or high exercise intensity should
be modeled separately. We adjusted the p-values of the two Chow
tests with Holm-Bonferroni correction. As a result, our analysis
yielded up to three regression models, to describe predictions at
different exercise intensities. Finally, we added the sensor measures
that were not hypothesised to predict an affect variable to the re-
gression models and tested them with two-tailed tests at 𝛼 = .05,
adjusting their p-values with Holm-Bonferroni correction. We re-
peated the whole procedure for each of the three levels of data
cleaning, using raw, cleaned, or personalised sensor measures and
affect variables, respectively. All regression models are presented
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Table 3: RQ1 results: Comparisons of emotions elicited within each VE (H4) across the three levels of exercise intensity based
on median affect ratings. The first column lists the VE and the following columns compare measures of the VE’s target emotion
a with measures of a non-targeted emotion b, respectively. Cells show the means 𝑎 and 𝑏 and standard deviations 𝜎 for the
two emotions, and non-parametric Wilcoxon signed-rank test results with effect size 𝑟 (𝑟 < 0.3 for ‘small’, 0.3 ≥ 𝑟 < 0.5 for
‘moderate’, and 𝑟 ≥ 0.5 for ‘large’). For separate Wilcoxon signed-rank tests for each exercise intensity level please refer to the
Extended Analysis Report in Supplementary Material.

𝑎) Target Emotion
Vs. 𝑏) Happy Rating

𝑎) Target Emotion
Vs. 𝑏) Stress Rating

𝑎) Target Emotion
Vs. 𝑏) Calm Rating

𝑎) Target Emotion
Vs. 𝑏) Sad Rating

Happy VE —

𝑎= 0.638, 𝜎= 0.447
𝑏= -0.492, 𝜎= 0.500
𝑍 = 11.712, 𝑟= .797
𝑝<.001∗∗∗

𝑎= 0.638, 𝜎= 0.447
𝑏= 0.382, 𝜎= 0.550
𝑍 = 5.670, 𝑟= .386
𝑝<.001∗∗∗

𝑎= 0.638, 𝜎= 0.447
𝑏= -0.541, 𝜎= 0.387
𝑍 = 12.642, 𝑟= .860
𝑝<.001∗∗∗

Stress VE

𝑎= 0.951, 𝜎= 0.605
𝑏= -0.481, 𝜎= 0.673
𝑍 = 12.009, 𝑟= .817
𝑝<.001∗∗∗

—

𝑎= 0.951, 𝜎= 0.605,
𝑏= -0.930, 𝜎= 0.458
𝑍 = 12.671, 𝑟= .862
𝑝<.001∗∗∗

𝑎= 0.951, 𝜎= 0.605,
𝑏= 0.195, 𝜎= 0.713
𝑍 = 9.686, 𝑟= .659
𝑝<.001∗∗∗

Calm VE

𝑎= 0.675, 𝜎= 0.511
𝑏= 0.381, 𝜎= 0.498
𝑍 = 6.528, 𝑟= .444
𝑝<.001∗∗∗

𝑎= 0.675, 𝜎= 0.511
𝑏= -0.589, 𝜎= 0.494
𝑍 = 11.813, 𝑟= .804
𝑝<.001∗∗∗

—

𝑎= 0.675, 𝜎= 0.511
𝑏= -0.440, 𝜎= 0.425
𝑍 = 12.361, 𝑟= .841
𝑝<.001∗∗∗

Sad VE

𝑎= 0.496, 𝜎= 0.765
𝑏= -0.543, 𝜎= 0.606
𝑍= 10.205, 𝑟= .694
𝑝<.001∗∗∗

𝑎= 0.496, 𝜎= 0.765
𝑏= -0.190, 𝜎= 0.579
𝑍 = 9.895, 𝑟= .673
𝑝<.001∗∗∗

𝑎= 0.496, 𝜎= 0.765
𝑏= 0.044, 𝜎= 0.532
𝑍 = 5.637, 𝑟= .384
𝑝<.001∗∗∗

—

with standardised coefficients as they indicate effect sizes and can
be compared against one another.

The results for the regression models are found in Table 4, show-
ing the standardised coefficients of predictors, asterisks to indicate
their level of significance, coefficients of determination R2, and
assumption violations (�𝐿,�𝐻 and�𝑁 ). Both tables indicate for each
predictor whether its regression coefficient is positive (green) or
negative (red), and show separate regression models for the same
affect rating for different exercise intensities if coefficients differ sig-
nificantly across exercise intensities. Table 4 highlights coefficients
that were hypothesised to be significant in bold, revealing that
most hypotheses were accepted, but some were rejected (for those
coefficients that are bold but not coloured). According to Falk and
Miller [57], models with an𝑅2 ≥ 0.1 can be considered as ‘adequate’.
The results in Table 4 show that regression models with the highest
‘personalised’ level of cleaning outperform all others in terms of
model fit and can adequately predict Arousal (𝑅2 = .321), Calm
(𝑅2 = .291), Stress (𝑅2 = .256), Valence (𝑅2 = .170), Fear (𝑅2 = .169),
Excited (𝑅2 = .128), and Content (𝑅2 = .128). Having adequate
models for both Valence and Arousal shows that regression models
can in principle be used to predict a wide range of emotions on the
circumplex model. However, we did not find adequate models for
Sad (𝑅2 = .040), Bored (𝑅2 = .054) and Happy (𝑅2 = .085).

Table 4 reveals the best physiological measures for predicting
each affect variable based on the magnitude of the standardised
coefficients (reported in brackets in this paragraph). The significant
predictors are also summarised in Figure 1-J. The only physiological

measures that we found to be significant predictors were PDL,
PDR, Power, Smile, and SCL. For all of the adequate models the
pupillometry measures are the best predictors in all cases with
one exception: Excited (Power = .182, PDR = .138, Smile = .112),
which is also the only adequate model where PDR but not PDL is a
significant predictor. In all other adequate models, PDL is a better
predictor than PDR with the exception of Stress (PDR = .236, PDL
= .231, Power = .171, SCL = .078). Apart from PDR and PDL, we see
Power as a significant predictor in all adequate models, e.g. for Fear
(PDL = .276, PDR = .158, Power = .105) and Calm (PDL = -.302, PDR
= -.222, Power = -.167), with the exception of Content (PDL = -.224,
PDR = -.129, Smile = .062). Valence (PDL = -.246, PDR = -.158, and
Power = -.103) and Arousal (PDL = .250, PDR = .250, Power = .237,
SCL = .111, Smile = .082), which can be used for predicting other
emotions, have similar predictors but with opposite relationships
for PDL, PDR, and Power. However, Arousal is also predicted by SCL
and unexpectedly by Smile, which contribute to the better model
fit compared to Valence along with PDR and Power being better
predictors. Finally, despite their inadequate models, Happiness (PDL
= -.184, Smile = .125, PDR = -0.081), Boredom (Smile = -.116, PDR =
-.108, PDL = -.077), and Sadness (PDL = .150) still have significant
predictors, which all include pupillometry measures.

5.3 RQ3: Data Cleaning
We compared the three levels of cleaning by inspecting their re-
spective regression models, i.e. their standardised coefficients, sig-
nificance of coefficients, and coefficient of determination 𝑅2. In
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Table 4: RQ2/RQ3 results: Overview of all affect models with standardised coefficients and overall coefficients of determination
R2. Green and red highlighting is used to denote significant positive and negative predictors respectively. Affect measures are
predicted by pupil dilation level (PDL) and response (PDR), blink rate (BR) and duration (BD), skin conductance level (SCL), skin
conductance response (SCR), heart rate (HR), heart rate variability (HRV), zygomaticus major activity (Smile), and bike power
output (Power). Violations of regression assumptions are denoted as �𝐿 (Linearity),�𝐻 (Heteroskedasticity), and�𝑁 (Normality).
Unbalanced residual plots are denoted with𝑈 .

DV Cleaning Intensity R2 PDL PDR BR BD SCL SCR HR HRV Smile Power

Valence
Pers All 0.17 -0.246∗∗∗ -0.158∗∗∗ -0.019 -0.071 -0.013 -0.041 -0.063 0.004 0.044 -0.103∗∗∗

Env All 0.1 -0.279∗∗∗ -0.228∗∗∗ -0.01𝑈 -0.031𝑈 -0.016𝑈 -0.064𝑈 -0.087 -0.075𝑈 -0.04𝑈 -0.118∗∗∗

Raw Low 0.155 -0.552∗∗∗ 0.014 0.068𝑈 -0.042�H -0.012𝑈 0.048𝑈 -0.004 -0.049𝑈 0.042𝑈 -0.017
Med 0.132 -0.507∗∗∗ 0.065 -0.022𝑈 -0.073�H 0.009𝑈 -0.138𝑈 0.111 0.003𝑈 -0.040𝑈 -0.129
High 0.122 -0.405∗∗∗ -0.083 -0.035𝑈 0.029�H 0.032𝑈 -0.050𝑈 0.046 0.044𝑈 -0.105𝑈 -0.167

Arousal
Pers All 0.321 0.250∗∗∗ 0.250∗∗∗ -0.011 0.024 0.111∗∗∗ -0.020 -0.028 0.024 0.082∗ 0.237∗∗∗

Env All 0.166 0.346∗∗∗ 0.289∗∗∗ 0.011𝑈 -0.002𝑈 0.076∗∗ -0.043𝑈 0.074 0.014 0.112∗ 𝑈 0.221∗∗∗

Raw Low/Med 0.174 0.397∗∗∗ 0.209∗∗∗ 0.019𝑈 -0.015𝑈 -0.182∗∗ 𝑈 0.003𝑈 0.042 0.036𝑈 0.105𝑈 0.227∗∗∗

High 0.116 0.267∗∗∗ 0.155 -0.032𝑈 -0.012𝑈 -0.244𝑈 0.126𝑈 -0.026 -0.075𝑈 0.039𝑈 0.236∗

Fear
Pers All 0.169 0.276∗∗∗ 0.158∗∗∗ 0.057 0.038 0.017 -0.038 -0.027 -0.014 0.055 0.105∗∗

Env Low/Med 0.106�N 0.301∗∗∗ �L 0.214∗∗∗ 0.099∗ 𝑈 0.001�H -0.004 0.036𝑈 0.008 0.005𝑈 0.086𝑈 0.060
High 0.040�N 0.158∗ �L 0.214∗∗ 0.053�H -0.021�H 0.050�H -0.025𝑈 0.072 -0.049𝑈 -0.019𝑈 0.125�H

Raw Low 0.146�N 0.369∗∗∗ �L 0.057 0.110�H -0.051�H -0.058𝑈 0.064𝑈 0.127 0.046𝑈 -0.009𝑈 0.052
Med 0.082�N 0.487∗∗∗ �L -0.037 0.085𝑈 0.089�H -0.073𝑈 0.096𝑈 0.138 -0.078𝑈 0.124𝑈 0.054
High 0.043�N 0.245∗∗∗ �L 0.104 �L 0.034𝑈 -0.015�H -0.237𝑈 0.107𝑈 0.079 0.038𝑈 -0.035𝑈 0.122

Stress
Pers All 0.256 0.231∗∗∗ 0.236∗∗∗ 0.004 0.051 0.078∗ -0.002 0.057 0.058 0.042 0.171∗∗∗

Env All 0.152 0.296∗∗∗ 0.325∗∗∗ 0.017�H 0.009�H 0.070∗ -0.010𝑈 0.039 0.055𝑈 0.082𝑈 0.231∗∗∗

Raw Low 0.224 0.475∗∗∗ �L 0.111 0.003�H 0.005�H -0.131𝑈 0.101𝑈 0.132 0.063𝑈 0.033𝑈 0.147
Med/High 0.175 0.492∗∗∗ �L 0.077 0.004�H 0.027�H -0.056𝑈 0.021𝑈 0.139�H 0.021�H 0.084𝑈 0.229∗∗∗

Happy
Pers All 0.085 -0.184∗∗∗ -0.081∗ -0.041 -0.058 0.041 -0.039 -0.121 0.036 0.125∗∗∗ 0.054
Env Low 0.036 -0.178∗ -0.059 0.075�H -0.094�H -0.014𝑈 -0.096𝑈 0.056�H 0.104�H 0.082𝑈 0.054�H

Med/High 0.065 -0.166∗∗∗ -0.084 -0.060�H -0.029�H 0.018𝑈 -0.101∗�H 0.000�H -0.137𝑈 0.098𝑈 -0.105�H
Raw Low 0.057 -0.390∗∗∗ �L 0.081 0.080�H -0.079�H -0.062𝑈 -0.016𝑈 0.026�H 0.000𝑈 0.117𝑈 0.079�H

Med 0.039 -0.308∗∗∗ 0.096 -0.002�H -0.080�H 0.051𝑈 -0.206�H 0.043�H 0.056𝑈 0.150�H -0.046�H
High 0.082 -0.297∗∗∗ 0.008�H -0.110�H 0.010�H -0.052�H 0.004�H -0.044�H -0.058𝑈 -0.025𝑈 -0.138�H

Sad
Pers All 0.040�N 0.150∗∗∗ �L 0.034 -0.013�H -0.004�H -0.083 0.014 -0.035 -0.047 -0.020 0.063
Env All 0.013�N 0.140∗∗∗ �L 0.099∗�H -0.026�H -0.033�H -0.046𝑈 0.013�H 0.004�H -0.073�H 0.061𝑈 0.043�H
Raw All 0.026�N 0.314∗∗∗ �L -0.026 �L -0.036�H -0.028�H 0.028�H -0.019�H -0.017�H -0.076𝑈 0.055𝑈 -0.007�H

Bored
Pers All 0.054 -0.077∗∗ -0.108∗∗∗ 0.081 0.036 -0.042 0.060 -0.055 -0.031 -0.116∗�H 0.015
Env All 0.041�N -0.099∗∗∗ -0.048 -0.002�H 0.049�H -0.074𝑈 0.092𝑈 0.025�H 0.008�H -0.130∗ 𝑈 -0.073�H
Raw All 0.032�N 0.001�H -0.110∗∗�H -0.002�H 0.049�H 0.204∗ 𝑈 -0.040𝑈 0.004�H -0.005𝑈 -0.117𝑈 -0.100�H

Excited
Pers All 0.128 0.104 0.138∗∗ -0.052 -0.039 -0.096 -0.067 -0.125 0.028 0.112∗ 0.182∗∗
Env Low 0.049 0.094 0.103 -0.022𝑈 -0.052�H 0.052𝑈 -0.027𝑈 0.126�H 0.039𝑈 0.054𝑈 0.162�H

Med/High 0.067 0.105 0.123 -0.001𝑈 -0.031�H 0.015𝑈 -0.088�H -0.006�H -0.111𝑈 0.142∗ 𝑈 0.150�H
Raw Low 0.067 -0.072�H 0.217∗�H -0.021�H -0.060�H -0.066𝑈 0.010𝑈 0.154�H -0.039𝑈 0.036𝑈 0.197�H

Med 0.055 -0.001 0.131 0.023�H -0.048 0.022�H -0.139�H 0.102�H 0.086𝑈 0.172𝑈 0.177�H
High 0.032 -0.005 0.038�H -0.032𝑈 -0.033�H -0.053�H -0.035�H 0.021 -0.095𝑈 0.058𝑈 0.131�H

Content
Pers All 0.128 -0.224∗∗∗ -0.129∗∗∗ -0.026 -0.039 -0.014 -0.046 -0.118 0.041 0.062∗ 0.000
Env Low 0.055 -0.260∗∗∗ -0.141∗ 0.088�H 0.016�H -0.017𝑈 -0.046𝑈 -0.032�H 0.001𝑈 -0.019𝑈 -0.001�H

Med/High 0.056 -0.213∗∗∗�H -0.139∗∗�H -0.010𝑈 -0.016�H 0.011𝑈 -0.102�H -0.078�H -0.143𝑈 0.048𝑈 -0.140�H
Raw LowMed 0.046 -0.388∗∗∗ -0.076�H 0.051�H -0.034�H -0.038𝑈 -0.018𝑈 -0.065�H 0.040𝑈 0.023𝑈 -0.061�H

High 0.069 -0.295∗∗∗�H -0.116�H -0.019𝑈 0.003�H -0.009𝑈 -0.031�H -0.002�H -0.018𝑈 -0.050𝑈 -0.136�H

Calm
Pers All 0.291 -0.302∗∗∗ -0.222∗∗∗ -0.006 -0.038 -0.013 -0.047 -0.060 0.033 0.029�H -0.167∗∗∗

Env Low 0.095 -0.335∗∗∗ -0.254∗∗∗ 0.014�H -0.099�H -0.021𝑈 0.021𝑈 -0.117 -0.010𝑈 -0.032𝑈 -0.188∗∗�H
Med/High 0.135 -0.344∗∗∗ -0.262∗∗∗ -0.029�H -0.038�H -0.040𝑈 -0.093�H -0.047�H -0.066𝑈 -0.074𝑈 -0.285∗∗∗�H

Raw Low 0.162 -0.463∗∗∗ �L -0.227∗∗ �L 0.035�H -0.075�H 0.031𝑈 0.079𝑈 -0.175�H -0.024𝑈 0.029�H -0.154∗�H
Med 0.183 -0.501∗∗∗ -0.032 -0.039�H -0.056�H 0.277𝑈 -0.263�H -0.036�H 0.123𝑈 -0.138𝑈 -0.257∗∗�H
High 0.16 -0.462∗∗∗ �L -0.071�H -0.010𝑈 -0.044�H 0.102𝑈 -0.141�H -0.069�H 0.059𝑈 -0.051�H -0.270∗∗∗�H

particular, we looked for notable changes such as changes in the
sign of a coefficient or violations of the assumption that better
cleaning improves model fit. Note that the Chow test cannot be

applied to compare the regression models as they are based on the
same data sets [110].

Table 4 also provides an overview of the effects the three levels
of cleaning (Pers, Env and Raw) have on the regression models. For
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Table 5: RQ4 results: Overview of regression models describ-
ing the relationship between physical exertion and affect,
with standardised coefficients for bike power output (Power)
and overall coefficient of determination R2. The highest level
of cleaning (Pers) was used for all models. Violations of re-
gression assumptions are denoted as �𝐿 (Linearity),�𝐻 (Het-
eroskedasticity), and�𝑁 (Normality).

DV Intensity R2 Power

Valence Low/Med 0.045 -0.190∗∗∗
High 0.062 -0.211∗∗∗

Arousal All 0.154 0.392∗∗∗

Fear All 0.063�N 0.251∗∗∗ �L
Sad All 0.011�N 0.105∗∗ �L
Bored All 0.009 -0.093∗∗

Content
Low 0.008 -0.060
Med 0.025 -0.140∗�H
High 0.025 -0.132∗

Calm Low/Med 0.106 -0.293∗∗∗
High 0.120 -0.325∗∗∗

Happy Low 0.002 0.080�H
Med/High 0.007 -0.037

Excited Low 0.085 0.292∗∗∗
Med/High 0.035 0.206∗∗∗

Stress Low/Med 0.089 0.286∗∗∗ �L
High 0.088 0.271∗∗∗

each affect, a model (or more if coefficients are inconsistent across
exercise intensities) is provided for each cleaning level. Models are
compared by their standardised coefficients, their significance, and
coefficients of determination R2 as indicators of model fit.

Table 4 demonstrates that regression models with different levels
of cleaning for a specific affect variable exhibit significant coef-
ficients that are largely consistent in their sign. However, these
models widely differ in fit and violated assumptions. For example,
for all affect variables, the coefficient of determination R2 is always
higher for the personalised cleaning level compared to raw and
environmental cleaning, indicating a better model fit.

Similarly, the models generally exhibit increased robustness to
the effects of exercise with higher levels of data cleaning. Models
at the personalised cleaning level are consistently not separated
by exercise intensity. Additionally, regression assumptions tend to
be violated or unbalanced at the raw level but are typically valid
at the personalised level. Notably, the model fit typically worsens
when transitioning from raw to environmental cleaning, as shown
by a decrease in R2. This phenomenon is a result of physiological
markers correlating with environmental stimuli rather than a user’s
affective response, such as pupils responding to light rather than
emotion. Further discussion on this topic can be found in section 6.

5.4 RQ4: Exertion and Affect
Similar to RQ2, we used multi-level linear regression models and
Chow tests to analyse the relationships between affect variables

Table 6: RQ4 results: Comparisons of IMI subscale scores be-
tween different levels of exercise intensity. The first column
lists the two compared levels of exercise intensity a and b.
The following columns each compare IMI subscale scores
between levels a and b. Cells show the means 𝑎 and 𝑏 and
standard deviations 𝜎 for the two levels, and non-parametric
Wilcoxon signed-rank test results with effect size 𝑟 (𝑟 < 0.3
for ‘small’, 0.3 ≥ 𝑟 < 0.5 for ‘moderate’, and 𝑟 ≥ 0.5 for ‘large’).

Exercise Intensity IMI Interest IMI Pressure IMI Competence

𝑎) Low 𝑏) Med

𝑎= 4.984, 𝜎= 1.149
𝑏= 4.645, 𝜎= 1.253
𝑍= 6.473, 𝑟= .381
𝑝<.001∗∗∗

𝑎= 2.736, 𝜎= 1.069
𝑏= 2.931 , 𝜎= 1.063
𝑍= -3.989, 𝑟= -.235
𝑝<.001∗∗∗

𝑎= 4.493, 𝜎= 1.308
𝑏= 4.197, 𝜎= 1.260
𝑍= 4.432, 𝑟= .261
𝑝<.001∗∗∗

𝑎) Low 𝑏) High

𝑎= 4.984, 𝜎= 1.149
𝑏= 4.623, 𝜎= 1.329
𝑍= 6.488, 𝑟= .382
𝑝<.001∗∗∗

𝑎= 2.736, 𝜎= 1.064
𝑏= 3.389, 𝜎= 1.252
𝑍= -7.318, 𝑟= -.431
𝑝<.001∗∗∗

𝑎= 4.493, 𝜎= 1.308
𝑏= 3.794, 𝜎= 1.302
𝑍= 8.744, 𝑟= .515
𝑝<.001∗∗∗

𝑎) Med 𝑏) High

𝑎= 4.645, 𝜎= 1.253
𝑏= 4.623, 𝜎= 1.336
𝑍= 0.575, 𝑟= .034
𝑝= .566

𝑎= 2.931, 𝜎= 1.063,
𝑏= 3.389, 𝜎= 1.252
𝑍= -5.422, 𝑟= -.320
𝑝<.001∗∗∗

𝑎= 4.197, 𝜎= 1.260
𝑏= 3.794, 𝜎= 1.302
𝑍 = 5.779, 𝑟= .341
𝑝<.001∗∗∗

and physical exertion. We first regressed each affect variable onto
power output as an indicator of physical exertion, using the high-
est ‘personalised’ cleaning level. Table 5 provides an overview of
the regression models describing the relationships between phys-
ical exertion and affect. The highlighted cells indicate that most
regressions were significant, although with ‘weak’ coefficients of
determination, and some of them violate regression assumptions.

We then also analysed the relationship between physical exertion
and IMI scores, which were only measured once per level of exercise
intensity. We did this by regressing each IMI subscale score onto
the level of exercise intensity, encoded as 0 for low, 1 for medium
and 2 for high-intensity. The encoded level of exercise intensity
was treated as interval-scaled predictor because the three levels
are equally spaced in terms of their ranges of heart rate reserve
(50%-60%, 60%-70% and 70%-80%). Multi-level linear regressions
showed that the exercise intensity level significantly decreased
IMI Interest/Enjoyment (𝐵 = −0.181, 𝑡 (214) = −3.113, 𝑝 = .002)
and Perceived Competence (𝐵 = −0.350, 𝑡 (214) = −5.612, 𝑝 <

.001), as well as significantly increasing Pressure/Tension (𝐵 =

0.326, 𝑡 (214) = 4.847, 𝑝 < .001).
In addition to linear regressions, we also performed repeated

measures ANOVA for each IMI subscale with exercise intensity
level as the independent variable. Similar to our analysis for RQ1,
after testing normality using Shapiro-Wilk tests and inspecting
QQ-plots we decided to non-parametric test alternatives to address
any concerns about violations of normality. We tested the over-
all effects of exercise intensity level on an IMI subscale score. If
Mauchly’s tests indicated a violation of sphericity, Huynh-Feldt
correction was used. If the main effect of exercise intensity level
was significant, we performed pairwise Wilcoxon signed-rank tests
with Holm–Bonferroni correction.

The main effect of exercise intensity level was significant for
all IMI subscales, i.e. Interest/Enjoyment (𝜒2 (2) = 12.878,𝑊 =

0.089, 𝑝 = .002∗∗), Pressure/Tension (𝜒2 (2) = 14.210,𝑊 = 0.099,
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𝑝 < .001∗∗∗), and Perceived Competence (𝜒2 (2) = 14.127,𝑊 =

0.098, 𝑝 < .001∗∗∗). Table 6 summarises the results of all pairwise
comparisons, which support the results of the regression models.

6 DISCUSSION
In this section we first discuss our findings for each research ques-
tion and suggest future work. Then we provide practical recom-
mendations for affect recognition in VR exergames.

6.1 RQ1: Affect Manipulation
Our VEs were consistent with design suggestions from related work
on emotion-inducing stimuli [60, 66, 99, 114, 165, 185]. The results
validate these design choices, with all VEs eliciting significantly
more of their target emotion than the other VEs, and the respective
target emotions significantly more dominant in each VE compared
to the other target emotions. While it might not always be desirable
for exergames to elicit some of these emotions, it is important
that affective exergames can detect them to optimise the player
experience. It is important to elicit these emotions appropriately to
build robust affect recognition models [89].

Our results indicate that to elicit Happiness, Stress, Calmness,
and Sadness irrespective of exercise intensity level, researchers
and exergame designers should consider exergame mechanics and
difficulty (e.g. the quantity of ‘rewards’ and obstacles) [99, 165],
communication and feedback to the player (e.g. messages of encour-
agement or countdown timers) [32], the aesthetics of the exergame
environment (e.g. lighting, skybox colours, terrain textures, and
game objects) [50, 66], and the sound design (e.g. game object sound
effects, ambient sound effects, and soundtracks) [60, 114, 131]. We
provide the full Unity implementations of our exergame VEs for
other researchers and designers to build upon.

Considering the results in Figure 4, Fear and Sadness ratings were
comparatively low.While Fear was not a target emotion for our VEs,
this could be explored further in a VR exergaming context, e.g. in a
survival-horror exergame and with jump scares similar to Müller
et al. [123]. However, Sadness was a target emotion and we made
informed design decisions to elicit it appropriately. Müller et al.
[123] elicited Sadness through repeated failure, which is similar to
our Stress VE with the inclusion of Skull coins. While the Sadness
VE did increase Sadness ratings, further steps could be taken to
induce it, e.g. by including sad narrative devices or staging sad
social situations through non-player characters.

Furthermore, Boredom, which plays an important role in player
experience, could be explored further by designing a VE that is
repetitive, linear in gameplay, and lacks visual variety, challenge,
and interaction [11, 129]. Boredom is likely more easily induced at
lower exercise intensities, due to the reduced challenge, and will
likely be elicited more reliably over longer gameplay sessions.

6.2 RQ2: Affect Recognition
Our results confirm many physiological measures reported in the
affect literature as significant predictors of affect during VR ex-
ergaming across different exertion levels. In particular, pupil di-
lation (PDL and PDR) was a common, strong predictor and the
signs of PDL/PDR coefficients agree with the literature and pi-
lot results [2, 29, 36, 37, 92, 125, 133, 173, 206]. Furthermore, we

confirmed Smile as a positive predictor of Happiness, Excitement,
and Contentness [54, 109, 159, 210]. PDL and PDR significantly
predicted Boredom as hypothesised; however, our results agreed
with literature on directionality (negative) [195] rather than our
pilot results. We also confirmed SCL as a positive predictor of
Arousal [15, 29, 155] and Stress [22, 179].

Some physiological measures commonly used in non-exercise
contexts were rejected as predictors during VR exergaming. HRV
and Smile did not predict Valence as was initially hypothesised [109,
159, 167, 182]. For HRV, this could be a consequence of the well-
established limitations of below-24-hour measures of HRV as de-
scribed by Shaffer and Ginsberg [166]. However, HRV should be
explored further for affective VR exergaming as it has been shown
to be a strong predictor of Valence outside of exergaming contexts.
Additional measures (e.g. PNN50) and cleaning approaches could
be necessary to increase the predictive power of HRV in exergam-
ing. For Smile, zygomaticus major activity could be influenced by
physical responses to exercise such as mouth-agape panting, which
could also explain why it was a significant predictor of Arousal.
Despite this, Smile was still a significant predictor of discrete high
Valence emotions — Happiness, Excitement, and Contentness. To
improve Smile as a predictor of Valence, alternative sensing ap-
proaches could be explored, such as fEMG integrated into the VR
headset to directly sense zygomaticus major and corrugator super-
cilii activation rather than analysing blend shapes of the mouth
provided by a visual lip tracker.

Interestingly, while SCL was a strong predictor of Arousal and
Stress, our results reject SCR as a significant predictor despite being
hypothesised [15, 22, 29, 155, 179]. Our results also reject SCL and
SCR as significant predictors of Happiness [210]. These shortcom-
ings of SCL and especially SCR for affect recognition in exergaming
could be due to ceiling effects in EDA while exercising. The EDA
induced by exercise may outweigh any activity induced by emotion.
Future work could look at varying EDA electrode placement on
the user to better measure SCL/SCR responses to affect during VR
exergames, such as placement on the plantar fascia (foot) instead of
the palm. This placement has been shown to be more robust to mo-
tion artefacts during weight lifting [82], but has yet to be explored
for cycling. For SCR, alternatives to the ‘EDA positive change’ mea-
sure [112] such as event-related skin conductance responses [96]
could also be explored.

The inadequate models for Sadness, Boredom, and Happiness
may be a result of these emotions being more difficult to elicit [52],
and we observed a large variation in participant responses. Bore-
dom was not directly targeted and the responses indicate that it
was quite low across all VEs; this is unsurprising given the gen-
erally arousing nature of VR exergaming and the fact that many
participants had not experienced VR exergames before. The Happy
and Sad VEs may not have elicited deep feelings of happiness and
sadness given the relatively abstract nature of the VEs and tasks.
Another explanation for the inadequate model for detecting Sadness
could be a hidden variable influencing participant’s pupil dilation
unrelated to sadness. It is the only model that violates assumptions
of normality and linearity for PDL at the highest level of cleaning,
with the residual plots showing a left-skewed distribution and many
more residuals in the positive Sad range. This indicates that the
model is overestimating sadness using PDL. A potential influence
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could be the luminosity of the environment, despite correcting for
this by decoupling light reflex [146]. To improve the model, differ-
ent temporal lag parameters for the luminosity correction could
be explored to account for interpersonal differences in pupillary
response time to light [71].

Our affect recognition models yielded some unexpected results.
Perhaps the most interesting unexpected result was that the affect
model for Excited had an adequate model fit with three signifi-
cant predictors, despite not being hypothesised at all. This is a
particularly novel finding as there is limited related work exploring
physiological correlates of excitement, especially in the context
of VR exergaming. Feelings of excitement and amazement are key
affordances in VR, so it could be important to measure and monitor
excitement during these experiences to understand how and when
it is formed. For affective exergaming, such an understanding could
be operationalised in adaptive environments to optimise the user
experience. Another unexpected result that was not hypothesised
by prior work was that Smile was a predictor of Boredom, i.e. the
more bored participants were the less they smiled. As hypothesised,
Smile is a strong predictor of Happy, and participants are more
likely to be engaged in the experience if they are enjoying it [85].
Not smiling could therefore relate to lack of engagement and in
turn increased boredom. However, it is important to note that both
Happy and Bored had ‘inadequate’ models, and that Smile as a
predictor of boredom violated the assumption of Heteroskedastic-
ity and was only barely significant at the highest cleaning level.
Therefore, the relationship between Smile and boredom warrants
further investigation.

The insights from the regression models, the evidence of how
data cleaning increases predictive power and validity, and our open
source dataset all provide a springboard for future research and
development in affect recognition, including new approaches using
ML. Apart from addressing the problem of affect recognition as
a whole, ML could also be used to address specific sub-problems
such as recognising individual SCR responses in a continuous data
stream. Hybrid models combining ML with statistical regressions
may improve predictions whilst maintaining transparency and un-
derstanding between physiology and affect. For example, ML may
improve the predictive power of physiological measures that were
not found to be significant or which do not have a linear rela-
tionship, such as HRV where the relationship to Valence is well
evidenced in related work [167].

6.3 RQ3: Data Cleaning
The differences in Table 4 between the three levels of cleaning
(Raw, Env, and Pers) showcase a trend of increasingly significant
predictors, decreased violations of assumptions, and increased coef-
ficients of determination R2. Additionally, the models become more
consistent across exercise intensities and are hardly separated by
intensity at the Pers level, whereas they are almost always separated
at the Raw level. These general trends in cleaning levels highlight in
particular the importance of z-score transforms to account for inter-
personal differences, which has also been shown in other affective
exergaming research albeit in a more limited scope [13, 15].

A crucial finding is that the coefficient of determination often de-
creases between Raw and Env. This is most likely a prime example

of the affect models at the Raw level overfitting to the emotional
stimuli, rather than recognising the affect they elicit. For example,
environmental luminance is not accounted for at the Raw level and
the positive valence VEs were generally brighter than the nega-
tive valence VEs, resulting in smaller pupil diameter in positive
VEs. At the Env level, the model becomes less fitted to the stimuli
due to accounting for pupillary light reflexes. With this in mind,
we recommend that researchers and developers should consider
the physiological byproducts of their stimuli when building affect
recognition models both inside and outside of VR exergaming. In
our case, we sampled brightness based on the foveal position in-
ferred from the eye tracker (2◦ visual angle) to sanitise pupil dilation
measures; however, sampling the brightness of the entire image
in the headset may also be a sufficient cleaning measure in cases
where the gaze position is inaccurate or unavailable. This warrants
further investigation.

Another example of the importance of data cleaning is high-
lighted by SCL as a predictor of Arousal. At the Raw level for low
and medium exercise intensity, SCL is significantly negatively cor-
related with Arousal with a large coefficient and an apparently
‘adequate’ model fit (𝑅2 = 0.174) — something which directly con-
flicts with the literature on SCL and Arousal. However, by taking
into account existing sweat levels of the user at the Env and Pers
cleaning levels, SCL becomes significantly positively correlated, in
line with related work.

The relationship between data cleaning and model adequacy
is stark, yet there is still room for additional cleaning methods
that could increase the predictive power of some physiological
measures. For example, our results did not show BR, BD, SCR, HR,
or HRV to be significant predictors of affect during VR exergaming,
warranting further investigation into how they can be cleaned.

6.4 RQ4: Exertion and Affect
The significant relationships shown in Table 5 and Table 6 can be
explained by known effects of exercise [18, 53, 137, 187]. For exam-
ple, discomfort as a result of intense exercise can reduce valence,
especially when exceeding the ventilatory threshold [13, 15, 178].
Exercise is also often used to induce arousal in psychological stud-
ies [107]. However, most regressions shown in Table 5 have only
weak coefficients of determination and effect sizes in Table 6 are
small to moderate, reaffirming the assertion presented in related
work that VR exergames can distract users from uncomfortable
sensations in exercise [122, 141, 147, 178, 197]. In light of the re-
sults, designers should consider the type of emotion(s) they want
to elicit in an exergame and match the activity and exertion level
to be complementary. Table 5 can be used as a reference to select
the right exertion level to support the emotion and experience they
are trying to achieve. For example, if an exergame should be stress-
inducing or exciting, exercise activities with higher intensity levels
should be considered.

6.5 Guidelines for Affect Recognition in VR
Exergames

Based on our results, we make the following recommendations for
building affect recognition into VR exergames:
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(1) Incorporate pupillometry (PDL and PDR) with luminosity cor-
rection because it provides the strongest predictors for almost
all affect variables.

(2) Incorporate the user’s power output because it is a powerful
predictor of both Valence and Arousal as well as most other
affect variables.

(3) Take the preexisting sweat levels of a user into account when
using SCL to predict Arousal and Stress.

(4) Avoid linear regression models for predicting Sadness, Boredom,
and Happiness.

(5) Clean sensor data using the personalised approach as this pro-
vides the best predictive power and validity by accounting for
interpersonal differences.

(6) Do not use raw data without any cleaning as this can lead to
overfitting and erroneous predictions.

(7) Use multiple physiological sensors as this will increase predic-
tive power.

(8) Do not use blink measures as they provide little benefit.

6.6 Limitations
Our study used a within-participant design, which meant that our
results were influenced by participant familiarity and physical fa-
tigue. However, this was mitigated through counterbalancing and
providing participants extended breaks after an exercise bout. Par-
ticipants were recruited through convenience and snowball sam-
pling, resulting in a small bias towards males, younger participants,
and more physically active people. Due to our large sample size our
results are still generalisable to women, people from a fairly wide
age range (20s to 40s), and people who are only moderately active.
Furthermore, participants only had a brief experience playing the
VR exergame, with 12 minutes of gameplay total excluding warm
ups and cool downs. Typically exergames are played for longer
periods and over multiple gameplay sessions. Future work could
consider the longitudinal aspects of VR exergames and how players’
emotional responses evolve over repeated gameplay sessions.

Additionally, our VR exergame and dataset consider only one
type of exercise: cycling. A clear avenue for future work is to apply
and validate the same physiological measures, cleaning procedures,
and regression models for other types of VR exergames, e.g., other
cardiovascular exercises such as running and rowing, and strength
exercises such as weight-lifting. Future work could also explore
different exergame genres and game mechanics to target emotions
beyond what was explored in this paper. For instance, a horror
exergame could induce fear, and a multiplayer exergame could
introduce social dynamics of communication and competition.

Reflecting on our affect recognition models, we could have used
other popular approaches such as ML to recognise affect. How-
ever, our goal was to provide transparency on the relationships
between emotions and physiological responses in the context of VR
exergaming. Our results can inform parameter choice for future ML
affect models as well as provide validated approaches for removing
environmental and interpersonal artefacts in physiological data.

Future work could consider the game context in affective ex-
ergaming, allowing for appraisal-based affect recognition models
to be constructed. By considering the context of what a player is
currently experiencing in a VR exergame, a model can appraise
estimates of core affect [154] in light of the context, e.g., interpret
physiological responses in the context of a user colliding with an
obstacle or defeating a difficult opponent. While we did not con-
sider context in our affect recognition models, our open dataset
provided in Supplementary Materials also contains exergame data
(such as coins collected), which we invite researchers to analyse
and apply their own models to.

6.7 Impact
Our work advances affective VR exergames by providing guidelines
on sensor and parameter choices for affect recognition models. The
results can also be used by designers to inform exergame activity
and environment design to target specific emotions. Exergaming
is a notoriously noisy environment for physiological sensing; our
affect recognition models and approaches to data cleaning could
be applied, adapted, and validated for other equally noisy contexts
such as industrial applications that involve physical labour.

7 CONCLUSION
We developed and validated four virtual environments to induce
specific emotions in a VR cycling exergame, which were then used
to analyse the relationship between ten physiological measures
and ten affect ratings. We constructed affect recognition models
across three exercise intensities, and three levels of data cleaning
that account for environmental and interpersonal factors. Finally,
we tested the relationship between affect and physical exertion. In
summary, this led us to the following conclusions:
(1) Emotions can be consistently induced across exercise intensities

in VR exergaming.

(2) Despite VR exergaming creating a lot of noise in physiological
sensing, we identified several significant predictors of affect,
with pupil dilation being the strongest.

(3) Data cleaning of environmental and interpersonal factors is
important and not only improves predictive power but also
removes violations of assumptions for linear regression models.

(4) There is a significant albeit weak relationship between physical
exertion and most measures of affect.
Our findings support the design of adaptive VR exergaming

experiences that optimise enjoyment, performance, and adherence.
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